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Abstract: - In this paper, we describe a simulation system of myopathic SEMG signals. The 
architecture of the proposed system consists of two cascading modules. SEMG signals of three 
pathological skeletal muscles (Biceps brachii, Interosseurs dorsalis, Tibalis anterior) were generated. 
Root mean square (RMS Envelope) and PSD were used to validate our system. 
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1 Introduction 
Electromyography covers the study of muscle 

function through electrical signals. This medical 
examination collects, measures and records the 
electrical signal that propagates in the nerves or in 
the muscle fibers (action potential). It consists of 
plotting the variations of the muscular membrane on 
the display screen; this diagnostic procedure is 
performed either in a non-invasive manner using 
skin contact electrodes (surface electromyography) 
or in an invasive manner using needle electrodes 
(invasive electromyography). These detection 
processes are often used in several fields such as: 
neuromuscular clinical diagnostics, rehabilitation, 
prosthesis control, muscle fatigue studies and gait 
analysis [1-4]. 

The mathematical modeling of surface 
electromyography (SEMG) is a method which 
allows to synchronize physiological parameters (e. 
g. recruitment frequency, conduction rate...) with 
simulated results in order to analyze their influences 
and to test the validity of the algorithms used to 
process this kind of signals [5-7]. Recently, research 
studies have focused on different approaches to 
modeling and to simulating SEMG signals, which 
are based on phenomenological as well as 
physiological aspect [8,10]. In [1] and [6], the 
authors propose an in-depth recapitulative study of 
these approaches. 

Myopathic diseases are disorders in which 
skeletal muscle is mainly involved. Several factors 
can cause myopathies, including inherited genetic 
defects (e. g. muscular dystrophies), endocrine, 
inflammatory or metabolic abnormalities. The 
different myopathies lead weakness and atrophy of 

skeletal muscles [11]. Some myopathies, such as 
muscular dystrophies, develop very early, while 
others develop later in patient life. Some of them 
gradually worsen over time and do not respond well 
to treatment, while others appear treatable and often 
remain stable for long periods of time [1]. 

There are no several studies interested to model 
this kind of signals. However, their generation 
provides a significant contribution in several areas. 
For example, for classification purposes, a clinical 
study is required to build a classification model that 
is costly in terms of time and resources. In the 
interest of processing these signals, we propose a 
model that can be used to generate myopathic 
signals for different types of skeletal muscles. 

The paper will be organized as follows: Section 2 
presents the components of the myopathic SEMG 
signal generation system. Section 3 illustrates the 
experimental results of the proposed simulation 
model. Finally, in section 4 we close with a brief 
conclusion. 
 
 

2 Materials and Methods 
The physiological and anatomy studies of 

striated skeletal muscles reveal their composition in 
motor units (MU), which are composed of 
motoneurons and muscle fibers. In this section, we 
present a mathematical-based model which 
generates the electrical activity of myopathic 
muscular pathologies. The below diagram represents 
the different components of our generation model: 
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Figure 1 Simulation process of myopathic SEMG 

 
Figure 2 Generation process of MUAPi 

2.1. Intracellular Action Potential generation 
The generation of the intracellular action potential 
(IAP) produces a transmembrane ionic current Im(t) 
that propagates along the outer membrane of muscle 
fiber (sarcolemma). Moreover, the fiber is 
considered as a propagation tube for axially 
circulating current. We use the following formula to 
generate the aforementioned current: 
 

ሻݐሺܫ ൌ .ܥ .ܣ ሺݒሻଶ. ሺ	. .ݒ .ሻݐ ሺ6 െ 6 ∗ . .ݒ ݐ
 	. .ଶݒ .ଶሻݐ ݁ି௩௧ 

With: 
- A, C: constants affecting the amplitude of 

Im 
- Scale factor for adapting the model to the 

real observations 

- v: speed of current propagation along the 
fibers 

Consequently, myopathic IAPs characterizing by a 
short duration and a low amplitude are produced 
after a values modification in the responsible 
parameters of this phenomenon (A,). 
 
2.2. Generation of the mitigation function 
When the action potential (AP) propagates along the 
muscle fiber, it is automatically attenuated. In this 
subsection, we develop the process used to generate 
the appropriate attenuation function for myopathic 
signals. The mitigation equation is as follows: 
 

݂ ൌ
1

4. ߨ ߲ࢋ

1

ඥሺݖ െ 1ሻଶݖ  ߲ ሺሺݔ െ 1ሻଶݔ  ሺݕ െ 1ሻଶሻݕ
 

Such as:  
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 (x,y,z) the origin coordinates 
 (x1,y1,z1) electrode coordinates  
 ߲e: media conductivity 

Y1 represents the distance between the muscle fiber 
and the detection electrode. Typically, it’s a random 
value between 33.10-03 and 37.10-03. ߲e represents 
the conductivity value of the medium. In the case of 
myopathic patient, the extracellular medium is 
characterized by a high conductivity compared to 
the normal one. For this purpose, we multiply the 
value of ∂e by five 
 
2.3. Generation of pulse intervals  
The MU discharge phenomenon is an essential 
process to generate SEMG signals. It depends on the 
inter-pulse interval (IPI) which represents the time 
interval between two successive pulses. 
Furthermore, this process is activated by exciting 
the motor unit MUi at the randomly defined moment 
t(i).  
We suppose both the last excitation moment ti(j-1) 
and the firing rate (FR) of MUi are known, we can 
then calculate the next excitation moment tij. 
In order to simulate this process, we assume that 
firing rates follow a random truncated Poisson 
distribution between 8 and 42Hz. Then, the 
excitation moment tij is determined using the 
following equation:  
 

ݐ ൌ ሺିଵሻݐ   ܫܲܫ

where: ࡵࡼࡵ ൌ


ࡾࡲ
 

 
2.4. Structures generation of myopathic motor 
units 
Skeletal muscles, commonly composed of n motor 
units (MU) having different mechanical as well as 
electrical characteristics that vary according to their 
size. Whereas, the MU size is measured terms of the 
number of muscle fibers it contains.  
In myopathic cases, the number of UMs composing 
the muscle remains unchanged; however, a 
reduction in their sizes is identified according to an 
affectation percentage.  
In order to generate the structure of Myopathic UM, 
we use the following random process: 
 

ࢋࢠ࢙ࢁࡹ ൌ  െ ሺ ൈ  ሻ%࢚ࢉࢋࢌࢌࢇ
 
Such as: km presents a random uniform distribution 
of number of fibers in normal UM and i=[1...n].  
 
2.5. Generation of SEMG 
As we know, this step takes into consideration the 
muscle physiology, the conductor volume and the 

detection system.  Whereas, SEMG signal recorded 
using a single monopolar electrode may be 
considered as a superposition of M motor unit action 
potentials located at different depths under the 
human skin and activated in semi-random manner. 

ሺܩܯܧܵ ܼ, ሻݐ ൌ  ܣܷܯ ܲሺݐሻ

ெ

ୀଵ

 

When the detection system is bipolar, resulting 
signal is obtained using the difference between the 
SEMG recorded by two monopolar electrodes 
located in positions Za and Zb. 
 

ሻݐሺܩܯܧܵ ൌ ሺܩܯܧܵ ܼ, ሻݐ െ ,ሺܼܩܯܧܵ  ሻݐ
 
 

3 Results 
Using the simulation model presented in the 

previous section, we simulate normal and myopathic 
signals. We assume that the used detection system is 
differential with two parallel placed electrodes. The 
following figure shows two illustration examples 
(normal and myopathic with a loss percentage equal 
to 50%). We can observe that signal relating to the 
muscle with anomaly presents a decrease in the 
amplitude and the duration of the MUAP. 
 
Then, we focused on generating myopathic signals 
of three different skeletal muscles: 

- Biceps brachii 
- Interosseurs dorsalis 
- Tibalis anterior 

 
The composition of each muscle is described in the 
following table [12-14]:  
 

Table 1. Skeletal muscles composition 
 
Type of muscle MU 

number 
Number of 
fibers /UM 

Biceps brachii (BB)  774 750 ±50 
Interosseous dorsalis 
(IDA) 

119 340 ±50 

Tibialis anterior (TA) 445 270 ±50 
 
The obtained result is shown in figure 3. 
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Figure 3 Healthy and myopathic SEMG simulation results 
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Figure 4 Myopathic SEMG for different muscles 

For comparison purposes, we investigated the RMS 
factor (Figure 5.) as well as the PSD variation 

(Figures 7,8,9) of the previously simulated signals 
[15, 16]. 
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Figure 5 RMS Envelope results 

 

For each simulated signal, the RMS value where 
calculated. Given the SEMG signal S(j), the RMS 
value is defined as: 

ܵܯܴ ൌ ඩ
1
ܰ
	ܵሺ݆ሻଶ
ே

ୀଵ

 

With N represents the number of samples. 
We performed a boxplot to analyze the RMS values 
obtained from the simulated signals of the different 
muscles. Figure 6 shows the aforementioned 
boxplot; it represents six analyzed signals 

corresponding to three normal muscles and three 
myopathic muscles. 
As we can see, there are significant differences 
between the mean values of RMS for the three 
simulated signals, corresponding to the normal 
muscles. Moreover, the RMS of myopathic muscles 
are substantially different from the normal one.  
The result showed significant decrease in mean 
RMS from 146.10 -4 to 3,6. 10 -4, from 5. 10 -5 to 
112,5.10-5 and from 9,25. 10 -5 to 327. 10 -5 at the 
biceps brachii, the interosseous dorsalis and the 
tibialis anterior, respectively muscles. 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Amira Dridi, Jassem Mtimet, Slim Yacoub

E-ISSN: 2224-3488 101 Volume 15, 2019



 

Figure 6 Box plot of RMS 

 

Figure 7 PSD of biceps SEMG simulated signal 
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Figure 8 PSD of interosseus SEMG simulated signal 

 

Figure 9 PSD of tibialis SEMG simulated signal 
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In order to evaluate the electrical activity of the 
obtained signal we calculate their peak frequency 
using the above equation: 

ܨܭܲ ൌ 	ሻܦሺܲܵ	ݔܽ݉

Where PSDi denote the SEMG power spectrum at 
frequency bin i and i =1…N. 
The boxplots in figure 9 illustrates the variation in 
the values of the PKF of different simulated signals. 
Based on the obtained results, we remark that all 
PKF of myopathic muscles is lower than those of 
normal muscles.  

The peak frequency of myopathic patients’ SEMG 
signals was significantly lower in tibialis than in 
other muscles (9.9 10-7 (TA) vs. 1.25 10-7 (IDA) 
and 1.9 10-5 (BB)). 
As shown in Figure 6-8, the simulated myopathic 
SEMG of biceps and interosseous muscles showed 
quite uniform frequencies, while tibialis’s SEMG 
presented a more scattered frequency distribution. 
Therefore, the peak frequency was rather regular in 
biceps and interosseous myopathic SEMG signals, 
but variable in tibialis’s SEMG, as exemplified in 
figure 9. 

 

Figure 10 Box plot of RMS

4.  Conclusions 
In this work, we presented a framework for 
simulating myopathic SEMG signals. It is composed 
of two main modules: the first one generates the 
MUAPs of each UM and the second one performs 
the spatiotemporally summing of the different 
MUAPs obtained from the first module. The 
obtained results allowed us to study the appearance 
and the characteristics of myopathic SEMG signals 
of different skeletal muscles such as: Biceps brachii, 
Interosseurs dorsalis and Tibalis anterior. After the 
simulation of this kind of pathological signals, we 
conducted a comparative study of the synthetically 
recorded myopathic dataset with those normal. RMS 

and peak frequency of PSD where used to compare 
the synthetic results generated by our framework. 
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